Si5351 vfo cum bfo with S meter for hombrew trx |
Here is a Simple vfo+bfo using Si5351 and a 16X2 lcd with an S-meter. It is based on atmega328 as a controller. The connections for LCD, Si5351 and AVR are explained in may previous post at "A Simple Si5351 based vfo (signal generator) for ham radio use [quick start-setting up and general details]"
The idea is to keep it very basic with some of the essential elements and to use a Rotary encoder for all adjustments.
- Basic frequency adjustments using an encoder with varying steps
- Option for Receiver Incremental Tuning (RIT)
- Option to set a BFO offset and built in bfo signal generation using extra clocks in Si5351
- A simple S meter using character LCD
- Setting up for Direct Conversion/Superhet/ x4 time clock for SDR (softrock style)
- Frequency correction settings for calibrating Si5351+crystal
- EEPROM save of last frequency
A simple video of the prototype is shown below. In normal operation it defaults as a vfo. A setup mode (triggered by pressing down the encoder button while switching it on) is used to adjust the parameters
Wiring details can be seen by reading this post
Firmware can be downloaded at this Link
Uploading Firmware to arduino/atmega328 (See: http://www.hobbytronics.co.uk/arduino-xloader)
A reader was asking about the barplot and given below is a snippet to show how to make a simple bar-plot. For S meter, you may use linear or preferably a logarithmic scale (if no op-amps are used to do this at the signal level)
You can customize the characters using this tool Online LCD Character Generator
The code given below is a partial snippet
Firmware can be downloaded at this Link
Uploading Firmware to arduino/atmega328 (See: http://www.hobbytronics.co.uk/arduino-xloader)
A reader was asking about the barplot and given below is a snippet to show how to make a simple bar-plot. For S meter, you may use linear or preferably a logarithmic scale (if no op-amps are used to do this at the signal level)
You can customize the characters using this tool Online LCD Character Generator
The code given below is a partial snippet
// include the library code:
#include <LiquidCrystal.h>
int analogInput = A1; byte graph_simple[8] = { B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111, }; #include <LiquidCrystal.h> LiquidCrystal lcd(7, 8, 9, 10, 11, 12); //SET CORRECT PINS IN YOUR CASE void setup() { pinMode(analogInput, INPUT); lcd.begin(16, 2); lcd.createChar(0, graph_simple); } void loop() { value = analogRead(analogInput); barplot(value); } void barplot(int value) { //ADC value can range from 0-1023 value = (value * 16.0) / 1023.0; //Scale it to 16 lcd.clear(); // clear the old bars lcd.setCursor(0, 0); //draw graph starting from 0,0 for (i = 0; i < value; i++) { lcd.write(byte(0)); } }
Complete source with an i2c lcd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | /* more details of the project at www.riyas.org This entire program is taken from Jason Mildrum, NT7S and Przemek Sadowski, SQ9NJE. There is not enough original code written by me to make it worth mentioning. http://nt7s.com/ http://sq9nje.pl/ http://ak2b.blogspot.com/ */ #include <Rotary.h> #include <si5351.h> #include <Wire.h> #include <LiquidCrystal_I2C.h> #include <avr/eeprom.h> // S meter glyphs unsigned long previousMillis = 0; unsigned long starttime = 0; struct settings_t { int32_t bfo_offset ; uint32_t vfo ; bool quadruple; bool superhet; bool direct; int fcorrection; } settings; byte bar5[8]={B00000, B11011, B11011, B11011, B11011, B11011, B11011, B00000}; byte bar1[8]={B10000, B11000, B11100, B11110, B11110, B11100, B11000, B10000}; #define F_MIN 100000000UL // Lower frequency limit #define F_MAX 5000000000UL #define ENCODER_A 3 // Encoder pin A #define ENCODER_B 2 // Encoder pin B #define ENCODER_BTN A0 #define TX_BTN A2 #define SMETER_IN A1 // LCD - pin assignement in // LCD defs #define I2C_ADDR 0x3f // Define I2C Address where the PCF8574A is #define BACKLIGHT_PIN 3 #define En_pin 2 #define Rw_pin 1 #define Rs_pin 0 #define D4_pin 4 #define D5_pin 5 #define D6_pin 6 #define D7_pin 7 LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin); Si5351 si5351; Rotary r = Rotary(ENCODER_A, ENCODER_B); volatile uint32_t LSB = 899950000ULL; volatile uint32_t USB = 900150000ULL; volatile uint32_t bfo = 900150000ULL; //start in usb //These USB/LSB frequencies are added to or subtracted from the vfo frequency in the "Loop()" //In this example my start frequency will be 14.20000 plus 9.001500 or clk0 = 23.2015Mhz volatile uint32_t vfo = 1420000000ULL / SI5351_FREQ_MULT; //start freq - change to suit volatile uint32_t radix = 100; //start step size - change to suit volatile uint32_t ritstep=1; volatile int32_t menu=0; //start step size - change to suit uint16_t menuoption=0; boolean changed_f = 0; String tbfo = ""; boolean rit=0; boolean txon=0; boolean savetag=0; boolean setupmenu=0; volatile int32_t rit_offset=0; //------------------------------- Set Optional Features here -------------------------------------- //Remove comment (//) from the option you want to use. Pick only one //#define IF_Offset //Output is the display plus or minus the bfo frequency #define Direct_conversion //What you see on display is what you get //#define FreqX4 //output is four times the display frequency //-------------------------------------------------------------------------------------------------- /* MULTI-CLICK: One Button, Multiple Events Oct 12, 2009 Run checkButton() to retrieve a button event: Click Double-Click Hold Long Hold */ // Button timing variables int debounce = 20; // ms debounce period to prevent flickering when pressing or releasing the button int DCgap = 250; // max ms between clicks for a double click event int holdTime = 2000; // ms hold period: how long to wait for press+hold event int longHoldTime = 5000; // ms long hold period: how long to wait for press+hold event // Other button variables boolean buttonVal = HIGH; // value read from button boolean buttonLast = HIGH; // buffered value of the button's previous state boolean DCwaiting = false; // whether we're waiting for a double click (down) boolean DConUp = false; // whether to register a double click on next release, or whether to wait and click boolean singleOK = true; // whether it's OK to do a single click long downTime = -1; // time the button was pressed down long upTime = -1; // time the button was released boolean ignoreUp = false; // whether to ignore the button release because the click+hold was triggered boolean waitForUp = false; // when held, whether to wait for the up event boolean holdEventPast = false; // whether or not the hold event happened already boolean longHoldEventPast = false;// whether or not the long hold event happened already int checkButton() { int event = 0; // Read the state of the button buttonVal = digitalRead(ENCODER_BTN); // Button pressed down if (buttonVal == LOW && buttonLast == HIGH && (millis() - upTime) > debounce) { downTime = millis(); ignoreUp = false; waitForUp = false; singleOK = true; holdEventPast = false; longHoldEventPast = false; if ((millis()-upTime) < DCgap && DConUp == false && DCwaiting == true) DConUp = true; else DConUp = false; DCwaiting = false; } // Button released else if (buttonVal == HIGH && buttonLast == LOW && (millis() - downTime) > debounce) { if (not ignoreUp) { upTime = millis(); if (DConUp == false) DCwaiting = true; else { event = 2; DConUp = false; DCwaiting = false; singleOK = false; } } } // Test for normal click event: DCgap expired if ( buttonVal == HIGH && (millis()-upTime) >= DCgap && DCwaiting == true && DConUp == false && singleOK == true) { event = 1; DCwaiting = false; } // Test for hold if (buttonVal == LOW && (millis() - downTime) >= holdTime) { // Trigger "normal" hold if (not holdEventPast) { event = 3; waitForUp = true; ignoreUp = true; DConUp = false; DCwaiting = false; //downTime = millis(); holdEventPast = true; } // Trigger "long" hold if ((millis() - downTime) >= longHoldTime) { if (not longHoldEventPast) { event = 4; longHoldEventPast = true; } } } buttonLast = buttonVal; return event; } /**************************************/ /* Interrupt service routine for */ /* encoder frequency change */ /**************************************/ ISR(PCINT2_vect) { unsigned char result = r.process(); if (result == DIR_CW) { if(!setupmenu) set_frequency(1); else setup_menu(1); } else if (result == DIR_CCW) { if(!setupmenu) set_frequency(-1); else setup_menu(-1); } } /**************************************/ /* Change the frequency */ /* dir = 1 Increment */ /* dir = -1 Decrement */ /**************************************/ void set_frequency(short dir) { savetag=false; if(!txon) //lock on tx { if (dir == 1) { if(rit) rit_offset+= ritstep ; else vfo += radix; } if (dir == -1) { if(rit) rit_offset-= ritstep; else vfo -= radix; } // if(vfo > F_MAX) // vfo = F_MAX; // if(vfo < F_MIN) // vfo = F_MIN; if(rit) rit_offset=constrain(rit_offset,-10000,10000); changed_f = 1; } } /**************************************/ /* Read the button with debouncing */ /**************************************/ boolean get_button() { if (!digitalRead(ENCODER_BTN)) { delay(20); if (!digitalRead(ENCODER_BTN)) { while (!digitalRead(ENCODER_BTN)); return 1; } } return 0; } /*****************************/ /* display S meter */ /****************************/ void display_smeter(int strength) { // range is 0 to 1024 of adc //meter run from position 3 to 14 (12 ) int scale = (strength*15)/1024; lcd.setCursor(0, 1); lcd.print("S"); int smeter=(scale*11)/15; if(smeter<10) lcd.print(smeter); else lcd.print("9"); lcd.print(">"); unsigned long currentMillis = millis(); if (currentMillis - previousMillis >= 1000) { previousMillis = currentMillis; //clear all after a small interval lcd.setCursor(3, 1); lcd.print(" "); lcd.noCursor(); } // write it and show for 500 milli sec for (int i = 3; i<scale; i++) { lcd.setCursor(i, 1); lcd.write(byte(0)); if(smeter>9) lcd.print("+"); } } void display_rit() { lcd.setCursor(0, 0); lcd.print("RIT: "); lcd.setCursor(6, 0); lcd.print(rit_offset); lcd.print("Hz"); lcd.setCursor(15, 0); switch (ritstep) { case 1: lcd.print("1"); break; case 100: lcd.print("2"); break; case 2500: lcd.print("3"); break; } } /**************************************/ /* Displays the frequency */ /**************************************/ void display_frequency() { uint16_t f, g; lcd.setCursor(0, 0); lcd.print("VFO: "); lcd.setCursor(4, 0); f = vfo / 1000000; //variable is now vfo instead of 'frequency' Serial.println(vfo); if (f < 10) lcd.print(' '); lcd.print(f); lcd.print('.'); f = (vfo % 1000000) / 1000; if (f < 100) lcd.print('0'); if (f < 10) lcd.print('0'); lcd.print(f); lcd.print('.'); f = vfo % 1000; if (f < 100) lcd.print('0'); if (f < 10) lcd.print('0'); lcd.print(f); //lcd.print("Hz"); lcd.setCursor(0, 1); //lcd.print(tbfo); //Serial.println(vfo + bfo); //Serial.println(tbfo); } void show_stored() { lcd.clear(); lcd.setCursor(0, 0); lcd.print("vfo="); lcd.print(vfo); lcd.print("#"); if(settings.quadruple) lcd.print("Q"); else lcd.print("q"); lcd.setCursor(0, 1); if(settings.superhet) lcd.print("S"); else lcd.print("s"); if(settings.direct) lcd.print("D"); else lcd.print("d"); lcd.print("F:"); lcd.print (settings.fcorrection); lcd.print("B:"); lcd.print (settings.bfo_offset); } void setup_menu(short dir) { //called in setup mode if (dir == 1) { menu += radix; } if (dir == -1) { menu -= radix; } menu=constrain(menu,-10000000,10000000); } void show_vfo_setup() { lcd.clear(); lcd.setCursor(0, 0); lcd.print("VFO SETUP MODE"); delay(2000); lcd.clear(); //lcd.setCursor(0, 1); //show_stored(); while(1) { //delay(300); //settings.quadruple=false; //settings.superhet=false; //settings.direct=true; //settings.fcorrection=0; //settings.bfo_offset=0; int b = checkButton(); if ((b == 1) && (menuoption==0)) vfosteps(); if (b == 2) menu_option(); if (b == 3) holdEvent(); if (b == 4) longHoldEvent(); if(menuoption==0) show_bfo(); if(menuoption==1) show_fcorrection(); if(menuoption==2) show_bits(); } } void show_fcorrection() { lcd.clear(); lcd.setCursor(0, 0); lcd.print("FREQ CORRECTION"); } void show_bits() { lcd.clear(); lcd.setCursor(0, 0); lcd.print("SH x4 DC"); lcd.setCursor(0, 1); lcd.print(settings.superhet); } void menu_option() { menuoption+=1; if(menuoption>2) menuoption=0; } void show_bfo(){ settings.bfo_offset=menu; uint32_t f, g; lcd.clear(); lcd.setCursor(0, 0); lcd.print(" OFFSET: "); lcd.setCursor(9, 0); lcd.print(settings.bfo_offset); lcd.setCursor(0, 1); lcd.print(" STEP:"); lcd.print(round(log10(radix)+1)); if((int(log10(radix)) % 2)==0) { lcd.setCursor(0, 0); lcd.write(byte(1)); } else { lcd.setCursor(0, 1); lcd.write(byte(1)); } } void setup() { Serial.begin(19200); lcd.begin(16, 2); lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE); lcd.setBacklight(HIGH); lcd.home (); lcd.clear(); Wire.begin(); lcd.createChar(0, bar5); lcd.createChar(1, bar1); lcd.begin(16, 2); lcd.setCursor(5, 0); lcd.print("LB7UG"); lcd.setCursor(4, 1); lcd.print("loading"); delay(1000); lcd.clear(); //read from eeprom eeprom_read_block((void*)&settings, (void*)0, sizeof(settings)); vfo=constrain(settings.vfo,1000000,30000000); //vfo=1000000;//remove it after the test run if(vfo==1000000|vfo==30000000) { //dirty hack to fix the first run with eeprom settings.quadruple=false; settings.superhet=false; settings.direct=true; settings.fcorrection=0; settings.bfo_offset=0; } bfo= settings.bfo_offset; si5351.set_correction(settings.fcorrection); //**mine. There is a calibration sketch in File/Examples/si5351Arduino-Jason //where you can determine the correction by using the serial monitor. //initialize the Si5351 si5351.init(SI5351_CRYSTAL_LOAD_8PF, 27000000); //If you're using a 27Mhz crystal, put in 27000000 instead of 0 // 0 is the default crystal frequency of 25Mhz. si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA); // Set CLK0 to output the starting "vfo" frequency as set above by vfo = ? if (settings.superhet) { si5351.set_freq((vfo * SI5351_FREQ_MULT) + bfo, SI5351_PLL_FIXED, SI5351_CLK0); volatile uint32_t vfoT = (vfo * SI5351_FREQ_MULT) + bfo; // Set CLK2 to output bfo frequency si5351.set_freq( bfo, 0, SI5351_CLK2); } //si5351.drive_strength(SI5351_CLK0,SI5351_DRIVE_2MA); //you can set this to 2MA, 4MA, 6MA or 8MA //si5351.drive_strength(SI5351_CLK1,SI5351_DRIVE_2MA); //be careful though - measure into 50ohms //si5351.drive_strength(SI5351_CLK2,SI5351_DRIVE_2MA); // if(settings.direct) si5351.set_freq((vfo * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0); if(settings.quadruple) si5351.set_freq((vfo * SI5351_FREQ_MULT) * 4, SI5351_PLL_FIXED, SI5351_CLK0); pinMode(ENCODER_BTN, INPUT_PULLUP); pinMode(TX_BTN, INPUT_PULLUP); PCICR |= (1 << PCIE2); // Enable pin change interrupt for the encoder PCMSK2 |= (1 << PCINT18) | (1 << PCINT19); sei(); display_frequency(); // Update the display while(!digitalRead(ENCODER_BTN)) { setupmenu=true; show_vfo_setup(); delay(50000); } } void loop() { //eeprom timer unsigned long currentMillis = millis(); if (currentMillis - starttime >= 120000) { starttime = currentMillis; //clear all after a small interval savetag=true; } display_smeter(analogRead(SMETER_IN)); // Update the display if the frequency has been changed //tx status if(!digitalRead(TX_BTN)) txon=true; else txon=false; if (changed_f) { if(rit & !txon) { display_rit(); } else { display_frequency(); //reset rit offset to zero if frequency changed in non rit mode rit_offset=0; ritstep=1; } if (settings.superhet) { if(rit & !txon) si5351.set_freq(((vfo+rit_offset) * SI5351_FREQ_MULT) + bfo, SI5351_PLL_FIXED, SI5351_CLK0); else si5351.set_freq((vfo * SI5351_FREQ_MULT) + bfo, SI5351_PLL_FIXED, SI5351_CLK0); //you can also subtract the bfo to suit your needs //si5351.set_freq((vfo * SI5351_FREQ_MULT) - bfo , SI5351_PLL_FIXED, SI5351_CLK0); //set clock2 as bfo si5351.set_freq( bfo, 0, SI5351_CLK2); } if(settings.direct) { if(rit & !txon) si5351.set_freq(((vfo+rit_offset) * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0); else si5351.set_freq((vfo * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0); } if(settings.quadruple) { if(rit & !txon) si5351.set_freq(((vfo+rit_offset) * SI5351_FREQ_MULT) * 4, SI5351_PLL_FIXED, SI5351_CLK0); else si5351.set_freq((vfo * SI5351_FREQ_MULT) * 4, SI5351_PLL_FIXED, SI5351_CLK0); } changed_f = 0; } if(txon) { display_frequency(); delay(300); } else { if(rit) { display_rit(); delay(100); } } int b = checkButton(); if (b == 1) clickEvent(); if (b == 2) doubleClickEvent(); if (b == 3) holdEvent(); if (b == 4) longHoldEvent(); if(savetag) { //save to eeprom after 30 second of no frequency change if(vfo !=settings.vfo) { settings.vfo=vfo; eeprom_write_block((const void*)&settings, (void*)0, sizeof(settings)); savetag=false; lcd.clear(); delay(2000); display_frequency(); } } } void clickEvent() { if(!rit) vfosteps(); else { //steps for RIT lcd.setCursor(15, 0); switch (ritstep) { case 1: ritstep=100; break; case 100: ritstep=2500; break; case 2500: ritstep=1 ; break; } display_rit(); } } void doubleClickEvent() { rit=!rit; if(rit) display_rit(); else display_frequency(); } void holdEvent() { lcd.setCursor(0, 0); lcd.print("HO "); } void longHoldEvent() { lcd.setCursor(0, 0); lcd.print("LO "); settings.vfo=vfo; eeprom_write_block((const void*)&settings, (void*)0, sizeof(settings)); } void vfosteps() { switch (radix) { case 1: radix = 10; break; case 10: radix = 100; break; case 100: radix = 1000; break; case 1000: radix = 10000; break; case 10000: radix = 100000; break; case 100000: radix = 1000000; break; case 1000000: radix = 1; break; }//end switch //show cursor if(!setupmenu) { if(radix<1000) lcd.setCursor((13-log10(radix)), 0); else if (radix<1000000) lcd.setCursor((12-log10(radix)), 0); else if (radix=1000000) lcd.setCursor(5, 0); lcd.cursor(); delay(500); lcd.noCursor(); } } |
is there any full of this sourcecode??
ReplyDeleteupdated, have a nice weekend!
DeletePlease full code
ReplyDeleteHi. Do you have a si5351 and oled dds fvo with features such as voice lock, color dipsli inversim and more
ReplyDeletepore tawwa����
ReplyDeleteHallo I am Ciro,IK6AIZ,
ReplyDeleteI am looking for a ready sketch for Arduino nano clone and 16x2 display NOT I2c, to make the si5351a Arduino nano vfo, with s-meter, bfo frequency, another fixed frequency available from the third output of the si5351a, output meter and possibly also an swr meter. I cannot find anything suitable because all projects I have found do not have everything, I mean the circuit diagram with wiring and the proper relative sketch. Could please someone help me? My email address is: [email protected].
Thanks in advance!!!!
Hello and thank you for software
ReplyDeleteWhich SI5351 library do you use
Salutations
Connection diagram of LCD16x2 on Arduino for .hex code please?
ReplyDeleteHi
ReplyDeleteDo you have similar projet for CB radios?
Can you post me full library?
ReplyDelete[email protected]
Where I can find si5351.h ...
ReplyDeletewhere can i get the avr/eeprom.h library? thanks
ReplyDeleteTuan tolong kirim schenatic diagram dan code sketch nya... untuk mencoba...terima kasih banyak sebelumnya... [email protected]
ReplyDeletehas anyone found a complete program ???
ReplyDeletehas anyone found a complete program ???
ReplyDelete